Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning

نویسنده

  • Yu Su
چکیده

A continuum thermodynamics framework is devised to model the evolution of ferroelectric domain structures. The theory falls into the class of phase-field or diffuse-interface modeling approaches. Here a set of micro-forces and governing balance laws are postulated and applied within the second law of thermodynamics to identify the appropriate material constitutive relationships. The approach is shown to yield the commonly accepted Ginzburg-Landau equation for the evolution of the polarization order parameter. Within the theory a form for the free energy is postulated that can be applied to fit the general elastic, piezoelectric and dielectric properties of a ferroelectric material near its spontaneously polarized state. Thereafter, a principle of virtual work is specified for the theory and is implemented to devise a finite element formulation. The theory and numerical methods are used to investigate the fields near straight 180o and 90o domain walls and to determine the electromechanical pinning strength of an array of line charges on 180o and 90o domain walls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational modeling of domain wall interactions with dislocations in ferroelectric crystals

0020-7683/$ see front matter 2008 Elsevier Ltd. A doi:10.1016/j.ijsolstr.2008.11.021 * Corresponding author. Tel.: +1 512 471 3924; fax E-mail address: [email protected] (C.M. Land This paper provides a theoretical and numerical framework to investigate the interactions between domain walls and arrays of dislocations in ferroelectric single crystals. A phase-field approach is implemented i...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

Phase-Field Modeling of Domain Structure Energetics and Evolution in Ferroelectric Thin Films

A computational model developed based on the phase-field approach is used to model domain structures in ferroelectric thin films and to quantify the effects of strain and applied electric field on the microstructural evolution, and on the induced dielectric, electrostrictive, and piezoelectric film properties. Theoretically predicted vortex-like polydomain and experimentally observed bidomain a...

متن کامل

Dynamic Coupled Thermo-Viscoelasticity of a Spherical Hollow Domain

The generalized coupled thermo-viscoelasticity of hollow sphere subjected to thermal symmetric shock load is presented in this paper. To overcome the infinite speed of thermal wave propagation, the Lord-Shulman theory is considered. Two coupled equations, namely, the radial equation of motion and the energy equation of a hollow sphere are obtained in dimensionless form. Resulting equations are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006